266 research outputs found

    Accessing the genomic information of unculturable oceanic picoeukaryotes by combining multiple single cells

    Get PDF
    Mangot, Jean-François et al.-- 12 pages, 7 figures, 2 tables, supplementary information https://dx.doi.org/10.1038/srep41498Pico-sized eukaryotes play key roles in the functioning of marine ecosystems, but we still have a limited knowledge on their ecology and evolution. The MAST-4 lineage is of particular interest, since it is widespread in surface oceans, presents ecotypic differentiation and has defied culturing efforts so far. Single cell genomics (SCG) are promising tools to retrieve genomic information from these uncultured organisms. However, SCG are based on whole genome amplification, which normally introduces amplification biases that limit the amount of genomic data retrieved from a single cell. Here, we increase the recovery of genomic information from two MAST-4 lineages by co-assembling short reads from multiple Single Amplified Genomes (SAGs) belonging to evolutionary closely related cells. We found that complementary genomic information is retrieved from different SAGs, generating co-assembly that features >74% of genome recovery, against about 20% when assembled individually. Even though this approach is not aimed at generating high-quality draft genomes, it allows accessing to the genomic information of microbes that would otherwise remain unreachable. Since most of the picoeukaryotes still remain uncultured, our work serves as a proof-of-concept that can be applied to other taxa in order to extract genomic data and address new ecological and evolutionary questionsThis work was supported by the US NSF grants DEB-1031049 and OCE-821374 (to M.E.S.), by the ANR French projects Oceanomics (ANR-11-BTBR-0008, to C.V.), France Génomique (ANR-10-INBS-09, to P.W.), and Prometheus (ANR-09-PCS-GENM_217, to O.J.), by the EU project SINGEK (H2020-MSCA-ITN-2015-675752, to R.M.), and by the Spanish project MEFISTO (CTM2013-43767-P, MINECO). J.-F.M. was supported by a Marie Curie Intra-European Fellowship (PIEF-GA-2012-331190, EU). R.L. was supported by Juan de la Cierva (JCI-2010-06594, MINECO) and Ramón y Cajal fellowships (RYC-2013-12554, MINECO)Peer Reviewe

    Seasonal niche differentiation among closely related marine bacteria

    Get PDF
    Bacteria display dynamic abundance fluctuations over time in marine environments, where they play key biogeochemical roles. Here, we characterized the seasonal dynamics of marine bacteria in a coastal oligotrophic time series station, tested how similar the temporal niche of closely related taxa is, and what are the environmental parameters modulating their seasonal abundance patterns. We further explored how conserved the niche is at higher taxonomic levels. The community presented recurrent patterns of seasonality for 297 out of 6825 amplicon sequence variants (ASVs), which constituted almost half of the total relative abundance (47%). For certain genera, niche similarity decreased as nucleotide divergence in the 16S rRNA gene increased, a pattern compatible with the selection of similar taxa through environmental filtering. Additionally, we observed evidence of seasonal differentiation within various genera as seen by the distinct seasonal patterns of closely related taxa. At broader taxonomic levels, coherent seasonal trends did not exist at the class level, while the order and family ranks depended on the patterns that existed at the genus level. This study identifies the coexistence of closely related taxa for some bacterial groups and seasonal differentiation for others in a coastal marine environment subjected to a strong seasonality.En prensa8,95

    Role of bacterial community composition as a driver of the small-sized phytoplankton community structure in a productive coastal system

    Get PDF
    Financiado para publicación en acceso aberto: Universidade de Vigo/CISUGWe present here the first detailed description of the seasonal patterns in bacterial community composition (BCC) in shelf waters off the Ría de Vigo (Spain), based on monthly samplings during 2 years. Moreover, we studied the relationship between bacterial and small-sized eukaryotic community composition to identify potential biotic interactions among components of these two communities. Bacterial operational taxonomic unit (OTU) richness and diversity systematically peaked in autumn–winter, likely related to low resource availability during this period. BCC showed seasonal and vertical patterns, with Rhodobacteraceae and Flavobacteriaceae families dominating in surface waters, and SAR11 clade dominating at the base of the photic zone (30 m depth). BCC variability was significantly explained by environmental variables (e.g., temperature of water, solar radiation, or dissolved organic matter). Interestingly, a strong and significant correlation was found between BCC and small-sized eukaryotic community composition (ECC), which suggests that biotic interactions may play a major role as structuring factors of the microbial plankton in this productive area. In addition, co-occurrence network analyses revealed strong and significant, mostly positive, associations between bacteria and small-sized phytoplankton. Positive associations likely result from mutualistic relationships (e.g., between Dinophyceae and Rhodobacteraceae), while some negative correlations suggest antagonistic interactions (e.g., between Pseudo-nitzchia sp. and SAR11). These results support the key role of biotic interactions as structuring factors of the small-sized eukaryotic community, mostly driven by positive associations between small-sized phytoplankton and bacteria.Xunta de Galicia | Ref. EM2013/023Xunta de Galicia | Ref. ED481A-2019/290Xunta de Galicia | Ref. ED431I 2020/03Ministerio de Economía y Competitividad | Ref. CTM2017-83362-RMinisterio de Ciencia e Innovación | Ref. PID2019-110011RB-C3

    The influence of light and Water mass on bacterial population dynamics in the Amundsen Sea Polynya

    Get PDF
    Abstract Despite being perpetually cold, seasonally ice-covered and dark, the coastal Southern Ocean is highly productive and harbors a diverse microbiota. During the austral summer, ice-free coastal patches (or polynyas) form, exposing pelagic organisms to sunlight, triggering intense phytoplankton blooms. This strong seasonality is likely to influence bacterioplankton community composition (BCC). For the most part, we do not fully understand the environmental drivers controlling high-latitude BCC and the biogeochemical cycles they mediate. In this study, the Amundsen Sea Polynya was used as a model system to investigate important environmental factors that shape the coastal Southern Ocean microbiota. Population dynamics in terms of occurrence and activity of abundant taxa was studied in both environmental samples and microcosm experiments by using 454 pyrosequencing of 16S rRNA genes. We found that the BCC in the photic epipelagic zone had low richness, with dominant bacterial populations being related to taxa known to benefit from high organic carbon and nutrient loads (copiotrophs). In contrast, the BCC in deeper mesopelagic water masses had higher richness, featuring taxa known to benefit from low organic carbon and nutrient loads (oligotrophs). Incubation experiments indicated that direct impacts of light and competition for organic nutrients are two important factors shaping BCC in the Amundsen Sea Polynya

    Recent advances in environmental DNA-based biodiversity assessment and conservation

    Get PDF
    Special issue Environmental DNA‐based biodiversity assessment and conservation management in the Anthropocene.-- 4 pagesKnowledge of species distribution across space and time is critical to ecological conservation and environmental management at the local, regional and global scales (Albert et al., 2021). Traditional morphology-based surveys on either single-celled protists or larger animals and plants are time-consuming and largely expert-dependent (Baird & Hajibabaei, 2012; Liu et al., 2017; Yang et al., 2017). Recently, there has been considerable interest in the detection of environmental DNA (eDNA) fragments to allow species identification and monitoring within different environments, including soil, sediment, water, snow or air (Abdullah et al., 2021; Rees et al., 2014; Xie et al., 2018). The eDNA analysis can be used to detect common, endangered, invasive or rare species (Liu et al., 2019; Sepulveda et al., 2020), and provide a potent tool for elucidating mechanistic insights into ecological and evolutionary processes (Baird & Hajibabaei, 2012; Bohmann et al., 2014; Pawlowski et al., 2021). In past decades, eDNA metabarcoding has been increasingly used to study the present and past biodiversity from population to community levels, and eDNA-based surveys have revolutionized studies in ecology and biodiversity sciences, particularly in aquatic ecosystems (Euclide et al., 2021; Valentini et al., 2016). The significance of various human activities has resulted in multiple interacting environmental stressors in all types of ecosystems (Pukk et al., 2021; Yang et al., 2022). Such stressors, including global climate change, invasive species, chemical pollution and habitat loss, have led to biodiversity crises and threatened the human sustainability and ecosystem health (Osathanunkul & Minamoto, 2021; Yang et al., 2017). Comprehensive biodiversity assessment and conservation management are prerequisites for addressing these significant challenges in the Anthropocene (Mace et al., 2012; Sepulveda et al., 2020). Indeed, effective biodiversity assessment and conservation management require a deep understanding of organisms’ geographical distributions and their respective roles in ecosystem processes and services (Mo et al., 2021; West et al., 2021). However, researchers and conservation managers have encountered numerous obstacles in answering these fundamental and applied research questions at the local, regional and global scales. The aim of this special issue—Environmental DNA-based biodiversity assessment and conservation—was to provide a selection of studies that highlight the utility and diversity of eDNA-based research for biodiversity assessment and conservation management within marine and freshwater ecosystems. This special issue includes 12 articles that advance our knowledge of eDNA. Together, these studies deliver compelling evidence for successful applications of eDNA-based surveys in aquatic ecosystems in the AnthropoceneThis work was supported by the National Natural Science Foundation of China (91851104) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA23040302)With the institutional support of the ‘Severo OchoaCentre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe

    Bacterioplankton dynamics driven by interannual and spatial variation in diatom and dinoflagellate spring bloom communities in the Baltic Sea

    Get PDF
    In parts of the Baltic Sea, the phytoplankton spring bloom communities, commonly dominated by diatoms, are shifting toward the co-occurrence of diatoms and dinoflagellates. Although phytoplankton are known to shape the composition and function of associated bacterioplankton communities, the potential bacterial responses to such a decrease of diatoms are unknown. Here we explored the changes in bacterial communities and heterotrophic production during the spring bloom in four consecutive spring blooms across several sub-basins of the Baltic Sea and related them to changes in environmental variables and in phytoplankton community structure. The taxonomic structure of bacterioplankton assemblages was partially explained by salinity and temperature but also linked to the phytoplankton community. Higher carbon biomass of the diatomsAchnanthes taeniata,Skeletonema marinoi,Thalassiosira levanderi, andChaetocerosspp. was associated with more diverse bacterial communities dominated by copiotrophic bacteria (Flavobacteriia, Gammaproteobacteria, and Betaproteobacteria) and higher bacterial production. During dinoflagellate dominance, bacterial production was low and bacterial communities were dominated by Alphaproteobacteria, mainly SAR11. Our results suggest that increases in dinoflagellate abundance during the spring bloom will largely affect the structuring and functioning of the associated bacterial communities. This could decrease pelagic remineralization of organic matter and possibly affect the bacterial grazers communities.Peer reviewe

    Summer comes to the Southern Ocean: how phytoplankton shape bacterioplankton communities far into the deep dark sea

    Get PDF
    18 pages, 6 figures, 1 table, supporting information https://doi.org/10.1002/ecs2.2641During austral spring and summer, the coastal Antarctic experiences a sharp increase in primary production and a steepening of biotic and abiotic gradients that result from increased solar radiation and retreating sea ice. In one of the largest seasonally ice-free regions, the Amundsen Sea Polynya, pelagic samples were collected from 15 sites during a massive Phaeocystis antarctica bloom in 2010/2011. Along with a suite of other biotic and abiotic measurements, bacterioplankton were collected and analyzed for community structure by pyrosequencing of the 16S rRNA gene. The aims were to identify patterns in diversity and composition of heterotrophic bacterioplankton and to test mechanistic hypotheses for explaining these differences along variations in depth, water mass, phytoplankton biomass, and organic and inorganic nutrients. The overall goal was to clarify the relationship between primary producers and bacterioplankton community structure in the Southern Ocean. Results suggested that both epipelagic and mesopelagic bacterioplankton communities were structured by phytoplankton blooming in the euphotic zone. As chlorophyll a (chl-a) increased in surface waters, the abundance of surface bacterioplankton increased, but their diversity decreased. Similarity in bacterioplankton community composition between surface-water sites increased as the bloom progressed, suggesting that algal blooms may homogenize surface-water bacterioplankton communities at larger spatial scales. Below the euphotic zone, the opposite relationship was found. Mesopelagic bacterioplankton diversity increased with increasing chl-a in the overlying surface waters. This shift may be promoted by several factors including local increase in organic and inorganic nutrients from particles sinking out of the euphotic zone, an increase in niche differentiation associated with the particle flux, interactions with deep-dwelling macrozooplankton, and release from competition with primary producers. Additional multivariate analyses of bacterioplankton community structure and nutrient concentrations revealed distinct depth horizons, with bacterioplankton communities having maximum alpha and beta diversity just below the euphotic zone, while nutrient composition gradually homogenized with increasing depth. Our results provide evidence for bloom-driven (bottom-up) control of bacterioplankton community diversity in the coastal Southern Ocean and suggest mechanisms whereby surface processes can shape the diversity of bacterioplankton communities at great depthThe study was funded by the Swedish Research Council (grants to SB and LR) and the U.S. National Science Foundation through the ASPIRE project (ANT‐0839069

    Disentangling environmental effects in microbial association networks

    Get PDF
    Background Ecological interactions among microorganisms are fundamental for ecosystem function, yet they are mostly unknown or poorly understood. High-throughput-omics can indicate microbial interactions through associations across time and space, which can be represented as association networks. Associations could result from either ecological interactions between microorganisms, or from environmental selection, where the association is environmentally driven. Therefore, before downstream analysis and interpretation, we need to distinguish the nature of the association, particularly if it is due to environmental selection or not. Results We present EnDED (environmentally driven edge detection), an implementation of four approaches as well as their combination to predict which links between microorganisms in an association network are environmentally driven. The four approaches are sign pattern, overlap, interaction information, and data processing inequality. We tested EnDED on networks from simulated data of 50 microorganisms. The networks contained on average 50 nodes and 1087 edges, of which 60 were true interactions but 1026 false associations (i.e., environmentally driven or due to chance). Applying each method individually, we detected a moderate to high number of environmentally driven edges—87% sign pattern and overlap, 67% interaction information, and 44% data processing inequality. Combining these methods in an intersection approach resulted in retaining more interactions, both true and false (32% of environmentally driven associations). After validation with the simulated datasets, we applied EnDED on a marine microbial network inferred from 10 years of monthly observations of microbial-plankton abundance. The intersection combination predicted that 8.3% of the associations were environmentally driven, while individual methods predicted 24.8% (data processing inequality), 25.7% (interaction information), and up to 84.6% (sign pattern as well as overlap). The fraction of environmentally driven edges among negative microbial associations in the real network increased rapidly with the number of environmental factors. Conclusions To reach accurate hypotheses about ecological interactions, it is important to determine, quantify, and remove environmentally driven associations in marine microbial association networks. For that, EnDED offers up to four individual methods as well as their combination. However, especially for the intersection combination, we suggest using EnDED with other strategies to reduce the number of false associations and consequently the number of potential interaction hypotheses. Video abstrac

    Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean

    Get PDF
    Microbial eukaryotes are key components of the ocean plankton. Yet, our understanding of their community composition and activity in different water layers of the ocean is limited, particularly for picoeukaryotes (0.2–3 µm cell size). Here, we examined the picoeukaryotic communities inhabiting different vertical zones of the tropical and subtropical global ocean: surface, deep chlorophyll maximum, mesopelagic (including the deep scattering layer and oxygen minimum zones), and bathypelagic. Communities were analysed by high-tthroughput sequencing of the 18S rRNA gene (V4 region) as represented by DNA (community structure) and RNA (metabolism), followed by delineation of Operational Taxonomic Units (OTUs) at 99% similarity. We found a stratification of the picoeukaryotic communities along the water column, with assemblages corresponding to the sunlit and dark ocean. Specific taxonomic groups either increased (e.g., Chrysophyceae or Bicosoecida) or decreased (e.g., Dinoflagellata or MAST-3) in abundance with depth. We used the rRNA:rDNA ratio of each OTU as a proxy of metabolic activity. The highest relative activity was found in the mesopelagic layer for most taxonomic groups, and the lowest in the bathypelagic. Altogether, we characterize the change in community structure and metabolic activity of picoeukaryotes with depth in the global ocean, suggesting a hotspot of activity in the mesopelagic
    corecore